Description
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3…N-1.
We will ask you to perfrom some instructions of the following form:
- CHANGE i ti : change the cost of the i-th edge to ti
- QUERY a b : ask for the maximum edge cost on the path from node a to node b
Input
The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.
For each test case:
- In the first line there is an integer N (N <= 10000),
- In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
- The next lines contain instructions “CHANGE i ti” or “QUERY a b”,
- The end of each test case is signified by the string “DONE”.
There is one blank line between successive tests.
Output
For each “QUERY” operation, write one integer representing its result.
Example
Input:
1
3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE
Output:
1
3
题意
给出一棵树,有两种操作:修改边权与查询 u->v
路径边权最大值。
思路
树链剖分,将树剖分为若干条链,利用线段树去维护每一条链即可。(以后在其他文章中介绍这种算法)
AC 代码
#include<iostream>
#include<queue>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 10010;
struct Edge
{
int to;
int next;
} edge[maxn<<1];
int head[maxn],tot; //链式前向星存储
int top[maxn]; //v所在重链的顶端节点
int fa[maxn]; //父亲节点
int deep[maxn]; //节点深度
int num[maxn]; //以v为根的子树节点数
int p[maxn]; //v与其父亲节点的连边在线段树中的位置
int fp[maxn]; //与p[]数组相反
int son[maxn]; //重儿子
int pos;
int e[maxn][3];
void init()
{
memset(head,-1,sizeof(head));
memset(son,-1,sizeof(son));
tot=0;
pos=0;
}
void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
void dfs1(int u,int pre,int d) //第一遍dfs,求出 fa,deep,num,son (u为当前节点,pre为其父节点,d为深度)
{
deep[u]=d;
fa[u]=pre;
num[u]=1;
for(int i=head[u]; i!=-1; i=edge[i].next) //遍历u的邻接点
{
int v=edge[i].to;
if(v!=pre)
{
dfs1(v,u,d+1);
num[u]+=num[v];
if(son[u]==-1||num[v]>num[son[u]]) //寻找重儿子
son[u]=v;
}
}
}
void dfs2(int u,int sp) //第二遍dfs,求出 top,p
{
top[u]=sp;
p[u]=pos++;
fp[p[u]]=u;
if(son[u]!=-1) //如果当前点存在重儿子,继续延伸形成重链
dfs2(son[u],sp);
else return;
for(int i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].to;
if(v!=son[u]&&v!=fa[u]) //遍历所有轻儿子新建重链
dfs2(v,v);
}
}
int maxx[maxn<<2],dep=1; //存储线段树各节点的值以及最底层元素个数
void build() //一棵完美二叉树的初始化
{
while(dep<pos)
dep<<=1;
memset(maxx,0,sizeof(maxx));
}
void update(int o,int val) //自底向上更新数据
{
o+=dep;
maxx[o]=val;
while(o>1)
{
o>>=1;
maxx[o]=max(maxx[o<<1],maxx[(o<<1)^1]);
}
}
int query(int a,int b,int k,int l,int r) //查询[a,b]最大值,[l,r]为当前查询区间,k为当前所在节点
{
if(r<a||b<l)return 0; //如果当前查询区间与[a,b]交集为空,返回0
if(a<=l&&b>=r)return maxx[k]; //如果[a,b]包含[l,r]返回当前节点的值
else
{
int v1=query(a,b,k<<1,l,(l+r)>>1); //左子树
int v2=query(a,b,(k<<1)^1,((l+r)>>1)+1,r); //右子树
return max(v1,v2);
}
}
int find(int u,int v)
{
int f1=top[u],f2=top[v];
int tmp=0;
while(f1!=f2)
{
if(deep[f1]<deep[f2])
{
swap(f1,f2);
swap(u,v);
}
tmp=max(tmp,query(p[f1],p[u],1,0,dep-1));
u=fa[f1];
f1=top[u];
}
if(u==v)return tmp;
if(deep[u]>deep[v])swap(u,v);
return max(tmp,query(p[son[u]],p[v],1,0,dep-1));
}
int main()
{
ios::sync_with_stdio(false);
int T;
cin>>T;
while(T--)
{
int n;
cin>>n;
init();
for(int i=0; i<n-1; i++)
{
for(int j=0; j<3; j++)
cin>>e[i][j];
addedge(e[i][0],e[i][1]);
addedge(e[i][1],e[i][0]);
}
dfs1(1,0,0);
dfs2(1,1);
build();
for(int i=0; i<n-1; i++)
{
if(deep[e[i][0]]>deep[e[i][1]])
swap(e[i][0],e[i][1]);
update(p[e[i][1]],e[i][2]);
}
char op[10];
while(cin>>op)
{
if(op[0]=='D')break;
int a,b;
cin>>a>>b;
if(op[0]=='C')
update(p[e[a-1][1]],b);
else if(op[0]=='Q')
cout<<find(a,b)<<endl;
}
}
return 0;
}