Codeforces 849 C. From Y to Y (技巧)

Description

From beginning till end, this message has been waiting to be conveyed.

For a given unordered multiset of n lowercase English letters ("multi" means that a letter may appear more than once), we treat all letters as strings of length 1, and repeat the following operation n - 1 times:

Remove any two elements s and t from the set, and add their concatenation s + t to the set.

The cost of such operation is defined to be $\sum_{c \in {'a','b',...,'z'}}f(s,c)\times f(t,c)$ , where $f(s, c)$ denotes the number of times character c appears in string s.

Given a non-negative integer k, construct any valid non-empty set of no more than 100 000 letters, such that the minimum accumulative cost of the whole process is exactly k. It can be shown that a solution always exists.

 

Input

The first and only line of input contains a non-negative integer k (0 ≤ k ≤ 100 000) — the required minimum cost.

 

Output

Output a non-empty string of no more than 100 000 lowercase English letters — any multiset satisfying the requirements, concatenated to be a string.

Note that the printed string doesn't need to be the final concatenated string. It only needs to represent an unordered multiset of letters.

 

Examples input

12

 

Examples output

abababab

 

题意

给定一个代价 $k$ ,输出一个字符串满足根据公式合并 $n-1$ 次所花费的代价和等于 $k$ 。

 

思路

分析可知,不论我们挑选哪两个元素合并最终结果都是一样的。

且每一次合并的贡献只和相同字母的个数有关。

例如:

$aaaaaa$ ,我们挑选任意一种合并方式,其结果为 $1+2+3+4+5=15$ ,即 $cnt=len \times (len-1)/2$ 。

因此,最终的代价 $k$ 便由若干个 $cnt$ 组成,其中每一个代表一种字母。

 

AC 代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+10;
int cnt[maxn];

void init()
{
    for(int i=1; i<=10000; i++)
        cnt[i]=i*(i-1)/2;
}

void solve(int n)
{
    if(!n)
        puts("ab");
    else
    {
        int tot=0;
        while(n)
        {
            int i=1;
            while(n>=cnt[i])++i;
            --i;
            n-=cnt[i];
            while(i--)
                printf("%c",tot+'a');
            tot++;
        }
        putchar('\n');
    }
}

int main()
{
    init();
    int n;
    while(cin>>n)
        solve(n);
}