Description
On a two-dimensional plane, give you n integer points. Your task is to figure out how many different regular polygon these points can make.
Input
The input file consists of several test cases. Each case the first line is a numbers N (N <= 500). The next N lines ,each line contain two number Xi and Yi(-100 <= xi,yi <= 100), means the points’ position.(the data assures no two points share the same position.)
Output
For each case, output a number means how many different regular polygon these points can make.
Sample Input
4
0 0
0 1
1 0
1 1
6
0 0
0 1
1 0
1 1
2 0
2 1
Sample Output
1
2
题意
给出平面内 n 个点,问其中四个点组成正方形总共有多少种情况。
思路
因为 $n≤500$ ,所以我们枚举四个点的话会超时间。
寻找正方形,那么只需要知道其中相对的两个点便可以算出另外两个点咯!
所以我们只需要枚举其中两个点,然后计算出另外两个点的坐标,如果这两个点出现过则找到正方形,否则未找到。
在判断点是否出现过我们可以采用二分或者哈希等方法。
AC 代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include<iostream>
using namespace std ;
#define eps 1e-7
struct node
{
double x,y;
} p[510];
int n;
bool cmp(node a,node b)
{
if(a.x==b.x)
return a.y<b.y;
return a.x<b.x;
}
bool judge(double x,double y) // 二分查找
{
int low=0,high=n-1;
while(low<=high)
{
int mid=(low+high)/2;
if(fabs(p[mid].x-x)<eps&&fabs(p[mid].y-y)<eps)
return true;
else if(p[mid].x-x>eps||(fabs(p[mid].x-x)<eps&&p[mid].y-y>eps))
high=mid-1;
else low=mid+1;
}
return false;
}
int main()
{
ios::sync_with_stdio(false);
while(cin>>n)
{
int ans=0;
for(int i=0; i<n; i++)
cin>>p[i].x>>p[i].y;
sort(p,p+n,cmp);
for(int i=0; i<n; i++)
{
for(int j=i+1; j<n; j++)
{
if(i==j)continue;
double xa=(p[i].x+p[j].x)/2.0;
double ya=(p[i].y+p[j].y)/2.0;
double xb=p[i].x-xa;
double yb=p[i].y-ya;
if(judge(xa+yb,ya-xb)&&judge(xa-yb,ya+xb))
ans++;
}
}
cout<<ans/2<<endl;
}
return 0;
}