Description
A coding contest will be held in this university, in a huge playground. The whole playground would be divided into N blocks, and there would be M directed paths linking these blocks. The i-th path goes from the ui-th block to the vi-th block. Your task is to solve the lunch issue. According to the arrangement, there are si competitors in the i-th block. Limited to the size of table, bi bags of lunch including breads, sausages and milk would be put in the i-th block. As a result, some competitors need to move to another block to access lunch. However, the playground is temporary, as a result there would be so many wires on the path.
For the i-th path, the wires have been stabilized at first and the first competitor who walker through it would not break the wires. Since then, however, when a person go through the i – th path, there is a chance of pi to touch the wires and affect the whole networks. Moreover, to protect these wires, no more than ci competitors are allowed to walk through the i-th path.
Now you need to find a way for all competitors to get their lunch, and minimize the possibility of network crashing.
Input
The first line of input contains an integer t which is the number of test cases. Then t test cases follow.
For each test case, the first line consists of two integers N (N ≤ 100) and M (M ≤ 5000). Each of the next N lines contains two integers si and bi (si , bi ≤ 200).
Each of the next M lines contains three integers ui , vi and ci(ci ≤ 100) and a float-point number pi(0 < pi < 1).
It is guaranteed that there is at least one way to let every competitor has lunch.
Output
For each turn of each case, output the minimum possibility that the networks would break down. Round it to 2 digits.
Sample Input
1
4 4
2 0
0 3
3 0
0 3
1 2 5 0.5
3 2 5 0.5
1 4 5 0.5
3 4 5 0.5
Sample Output
0.50
题意
有 $n$ 个区域,每个区域都有一些人和食物,区域之间存在 $m$ 条有向路径,每条路都有一个人数上限。路径之间铺了电线,每当有人通过时都会有 $p_i$ 的概率碰到它,但是第一个通过的人一定不会碰到,求所有人都获取到食物而碰到电线的最小概率。
思路
最小费用流的基础题。
首先我们可以让某个区域的人得到当前他所在区域的某个食物,然后原图转化为每一个点存在一些人或者存在一些食物,要求碰到电线的最小概率也就是不碰到电线的最大概率。
假设碰到某条电线的概率为 $p$ ,那不碰到它的概率即为 $1-p$ ,而我们在费用流中的费用是相加得到的,怎么才能转化为那种形式呢?
我们知道 $\log_2(ab)=\log_2a+\log_2b$ ,于是对 $1-p$ 取对数,边的费用就变成了 $-\log_2(1-p)$ (负边权求最大值相当于正边权求最小值),边容量为 $cap-1$ (因为有 $cap-1$ 个人通过这条路径有几率碰到电线),对于第一个人所对应的边,费用为 $0$ ,容量为 $1$ 。
随后从源点向每一个人所在的节点连有向边,每一个食物所在的节点向汇点连有向边,找最小费用即可。
PS: 这道题目卡常好严重,貌似 1000ms 的题目 998ms 过的。
So ,如果 TLE 可以考虑再提交一下。
AC 代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 105;
const int maxm = 21000;
const int INF = 2e9;
const double eps = 1e-8;
struct edge
{
int to; //边终点
int next; //下一个兄弟位置
int cap; //容量
int flow; //流量
double cost; //费用
} edge[maxm];
int head[maxn],tol;
int pre[maxn];
double dis[maxn];
int N; //节点总个数
bool vis[maxn];
int person[maxn],thing[maxn];
void init(int n)
{
N=n;
tol=0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int cap,double cost) //同时增加原边与反向边
{
edge[tol].to=v;
edge[tol].cap=cap;
edge[tol].cost=cost;
edge[tol].flow=0;
edge[tol].next=head[u];
head[u]=tol++;
edge[tol].to=u;
edge[tol].cap=0;
edge[tol].cost=-cost;
edge[tol].flow=0;
edge[tol].next=head[v];
head[v]=tol++;
}
/*
* SPFA 算法判断是否存在s到t的通路
*/
bool spfa(int s,int t)
{
queue<int>q;
for(int i=0; i<N; i++)
{
dis[i]=INF;
vis[i]=false;
pre[i]=-1;
}
dis[s]=0;
vis[s]=true;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=false;
for(int i=head[u]; i!=-1; i=edge[i].next) //遍历所有与u临接的点
{
int v=edge[i].to;
if(edge[i].cap>edge[i].flow&&dis[v]-dis[u]-edge[i].cost>eps) //如果可以松弛该点
{
dis[v]=dis[u]+edge[i].cost;
pre[v]=i;
if(!vis[v]) //如果该点不在队列中,入队
{
vis[v]=true;
q.push(v);
}
}
}
}
return (pre[t]!=-1); //返回是否s到t是否有路径
}
/*
* int s 起点
* int t 终点
*/
int minCostMaxFlow(int s,int t,double &cost)
{
int flow=0;
while(spfa(s,t))
{
int minn=INF; //当前路径可增广值
for(int i=pre[t]; i!=-1; i=pre[edge[i^1].to]) //因为建图时每增加一条边会同时加入它的反向边,因此i^1为找出与i刚好相反的部分
{
if(minn>edge[i].cap-edge[i].flow)
minn=edge[i].cap-edge[i].flow;
}
for(int i=pre[t]; i!=-1; i=pre[edge[i^1].to]) //修改图,计算花费
{
edge[i].flow+=minn;
edge[i^1].flow-=minn;
cost+=edge[i].cost*minn;
}
flow+=minn;
}
return flow;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n=0,m=0;
scanf("%d%d",&n,&m);
init(n+2);
for(int i=1; i<=n; i++)
{
scanf("%d%d",person+i,thing+i);
person[i]-=thing[i];
}
for(int i=0; i<m; i++)
{
int u=0,v=0,cap=0;
double p;
scanf("%d%d%d%lf",&u,&v,&cap,&p);
p = -log2(1.0-p);
if(cap>1)
addedge(u,v,cap-1,p);
if(cap>0)
addedge(u,v,1,0);
}
for(int i=1; i<=n; i++)
{
if(person[i]>0)
addedge(0,i,person[i],0);
else
addedge(i,n+1,-person[i],0);
}
double cost = 0;
minCostMaxFlow(0,n+1,cost);
printf("%.2f\n",1.0-pow(2,-cost));
}
return 0;
}