Description
Given a 2D array of digits or grid, try to find the occurrence of a given 2D pattern of digits. For example, consider the following grid:
1234567890 0987654321 1111111111 1111111111 2222222222
Assume we need to look for the following 2D pattern array:
876543 111111 111111
The 2D pattern begins at the second row and the third column of the grid. The pattern is said to be present in the grid.
Input Format
The first line contains an integer $t$, the number of test cases.
Each of the $t$ test cases is represented as follows:
The first line contains two space-separated integers $R$ and $C$, indicating the number of rows and columns in the grid $G$.
This is followed by $R$ lines, each with a string of $C$ digits representing the grid $G$.
The following line contains two space-separated integers, $r$ and $c$, indicating the number of rows and columns in the pattern grid $P$.
This is followed by $r$ lines, each with a string of $c$ digits representing the pattern $P$.
Constraints
$1≤T≤5$
$1≤R, r, C, c≤1000$
$1≤r≤R$
$1≤c≤C$
Output Format
Display ‘YES’ or ‘NO’, depending on whether $p$ is present in $G$.
Sample Input
2
10 10
7283455864
6731158619
8988242643
3830589324
2229505813
5633845374
6473530293
7053106601
0834282956
4607924137
3 4
9505
3845
3530
15 15
400453592126560
114213133098692
474386082879648
522356951189169
887109450487496
252802633388782
502771484966748
075975207693780
511799789562806
404007454272504
549043809916080
962410809534811
445893523733475
768705303214174
650629270887160
2 2
99
99
Sample Output
YES
NO
题意
判断一个 $R \times C$ 的数字矩阵中是否存在给定 $r \times c$ 的子矩阵。
思路
今天无意看见了官方题解发现居然是纯暴力的解法…… 复杂度 $500^4 \times 5$ 也能过?
对于这样的题目,一般可以随机判点水数据,不过如果矩阵比较大的话这样的解法显然不可取了。
我们采用类似于奇偶校验的解法,将大矩阵中每一个 $r \times c$ 的区域压成一个 long long
的数字,然后 $O(n^2)$ 判断即可。
具体做法可以先统计出每一个 $r \times c$ 的子矩阵中各类数字出现的次数,我们知道 $64/10=6$,于是我们可以用每 $6$ 位二进制来存取一种数字的状态,假设数字 $0$ 出现了 $x$ 次,我们可以给 long long
标记数字的低 $6$ 位赋值 $x \% mod$ ,这里的 $mod$ 可以取 $2^6$ 以内较大的质数(有点哈希的思路,代码中 $mod$ 我取了 $2^6$ ,不过依然通过了所有的数据,不深究了)
最后用 $O(n^2)$ 的复杂度枚举判断,若标记数字与期望数字不同,则当前位置不满足条件,若相同,再用 $O(n^2)$ 的时间验证一下即可(多次验证的几率非常小,可以忽略不计)。
AC 代码
#include <bits/stdc++.h>
#define IO \
ios::sync_with_stdio(false); \
cin.tie(0); \
cout.tie(0);
using namespace std;
typedef long long LL;
const int maxn = 1e3 + 10;
int r, c;
int r2, c2;
char str[maxn][maxn];
char str2[maxn][maxn];
int rl[maxn][maxn][10];
LL bj[maxn][maxn];
bool judge(int x, int y, LL test) {
if (bj[x][y] != test) {
return false;
}
for (int i = 0; i < r2; i++) {
for (int j = 0; j < c2; j++) {
if (str2[i][j] != str[x - r2 + i][y - c2 + j]) {
return false;
}
}
}
return true;
}
bool solve() {
memset(rl, 0, sizeof(rl));
memset(bj, 0, sizeof(bj));
for (int i = 1; i <= r; i++) {
for (int j = 1; j <= c; j++) {
for (int k = 0; k < 10; k++) {
rl[i][j][k] =
rl[i - 1][j][k] + rl[i][j - 1][k] - rl[i - 1][j - 1][k];
}
++rl[i][j][str[i - 1][j - 1] - '0'];
}
}
for (int i = r2; i <= r; i++) {
for (int j = c2; j <= c; j++) {
int sm[10] = {0};
LL flag = 0;
for (int k = 0; k < 10; k++) {
sm[k] = rl[i][j][k] - rl[i - r2][j][k] - rl[i][j - c2][k] +
rl[i - r2][j - c2][k];
flag <<= 6;
flag |= sm[k] & ((1 << 6) - 1);
}
bj[i][j] = flag;
}
}
LL test = 0;
int sm[10] = {0};
for (int i = 0; i < r2; i++) {
for (int j = 0; j < c2; j++) {
++sm[str2[i][j] - '0'];
}
}
for (int i = 0; i < 10; i++) {
test <<= 6;
test |= sm[i] & ((1 << 6) - 1);
}
for (int i = r2; i <= r; i++) {
for (int j = c2; j <= c; j++) {
if (judge(i, j, test)) {
return true;
}
}
}
return false;
}
int main() {
#ifdef LOCAL_IM0QIANQIAN
freopen("test.in", "r", stdin);
freopen("test.out", "w", stdout);
#else
// IO;
#endif // LOCAL_IM0QIANQIAN
int T;
scanf("%d", &T);
while (T--) {
scanf("%d%d", &r, &c);
for (int i = 0; i < r; i++) {
cin >> str[i];
}
scanf("%d%d", &r2, &c2);
for (int i = 0; i < r2; i++) {
cin >> str2[i];
}
cout << (solve() ? "YES" : "NO") << endl;
}
return 0;
}