# FZU 2214 Knapsack problem （超大容量背包）

## Description

Given a set of n items, each with a weight w[i] and a value v[i], determine a way to choose the items into a knapsack so that the total weight is less than or equal to a given limit B and the total value is as large as possible. Find the maximum total value. (Note that each item can be only chosen once).

## Input

The first line contains the integer T indicating to the number of test cases.

For each test case, the first line contains the integers n and B.

Following n lines provide the information of each item.

The i-th line contains the weight w[i] and the value v[i] of the i-th item respectively.

1 <= number of test cases <= 100

1 <= n <= 500

1 <= B, w[i] <= 1000000000

1 <= v[1]+v[2]+…+v[n] <= 5000

All the inputs are integers.

## Output

For each test case, output the maximum value.

## Sample Input

1
5 15
12 4
2 2
1 1
4 10
1 2


## Sample Output

15


## 题意

n 件物品放入容量为 B 的背包，每件物品都有它的权重和体积，问所能获得的最大权值。

## AC 代码

#include <iostream>
#include<cstring>
#include<algorithm>
#define IO ios::sync_with_stdio(false);\
cin.tie(0);\
cout.tie(0);
using namespace std;
typedef long long LL;
const int maxn = 1e5+10;
const int mod = 998244353;
const int inf = 0x3f3f3f3f;
LL n,b;
LL w[maxn],v[maxn];
LL dp[5100];

void solve()
{
memset(dp,inf,sizeof(dp));
dp[0] = 0;
for(int i=1; i<=n; i++)
for(int j=5000; j>=v[i]; j--)
dp[j] = min(dp[j],dp[j-v[i]]+w[i]);
for(int i=5000; i>=0; i--)
if(dp[i]<=b)
{
cout<<i<<endl;
break;
}
}

int main()
{
IO;
int T;
cin>>T;
while(T--)
{
cin>>n>>b;
for(int i=1; i<=n; i++)
cin>>w[i]>>v[i];
solve();
}
return 0;
}